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Abstract  

Vessel monitoring system (VMS) technology records the time, location, bearing, 

and speed for fishing vessels that have the technology on board.  VMS equipment has 

been put in place on all vessels in a number of fisheries, including all trawling vessels 

that fish for pollock, cod, and Atka mackerel in the United States Eastern Bering. VMS 

technology has been used in enforcement but a limited amount of work has been done 

utilizing VMS data to improve estimates of fishing activity.  This paper integrates VMS 

data and National Marine Fisheries Service (NMFS) observer data from the United 

States Eastern Bering Sea pollock fishery to predict whether or not fishing is occurring 

for unobserved fishing trips.  While there is 100 percent observer coverage for all 

catcher-processors and motherships in the fishery and some of the vessels that deliver to 

shoreside processors, approximately 2/3s of catcher vessels that deliver to shoreside 

processors have coverage for only 30 percent of their fishing days.  The primary goals of 

this paper are to determine how accurately we can predict fishing for observed vessels 

and to estimate where and when fishing occurs for the unobserved trips of the vessels 

with partial observer coverage.   

 

We employ a variety of techniques and data specifications to improve model 

performance and out-of-sample predictive success, but finally settle upon a generalized 

additive model (GAM) as the best formulation for predicting fishing.  Assessing the 

probability of fishing in any location begins with a consideration of contemporaneous 

observable information: speed, change in direction, and location and we utilize these 

predictors in developing the model.  We assess spatial correlation in the residuals of the 

10/4/2008  Page 2 



chosen model, but find no correlation after taking into consideration other VMS 

predictors.  We compare maps of fishing effort to predictions for vessels with 100 percent 

observer coverage and compare the results to observed data for 2004.  We assess the 

effectiveness of these methods for fisheries with lower observer coverage and conclude 

with a discussion of a variety of policy considerations.   

 

Introduction 

Vessel monitoring system (VMS) technology records the time, location, bearing, and 

speed for monitored vessels.  Fisheries that have 100% VMS coverage include all 

trawling fleets that fish for pollock, cod, and Atka mackerel in the United States Eastern 

Bering Sea.   But while VMS technology has been used extensively in the enforcement of 

area closures, a limited amount of research has been conducted utilizing VMS data to 

improve our estimates of fishing activity.  For example, Rijnsdorp et al. (1998) used 

VMS to examine trawling effect on benthic organisms in the North Sea and later 

Rijnsdorp et al. (2001) examined the redistribution of the cod fleet in the North Sea after 

the institution of a marine protected area. Deng et al. (2005) explored the use of VMS to 

examine trawling intensity and stock depletion due to trawling in Australia’s northern 

prawn fishery. Murawski et al. (2005) documented the spatial distribution of fishing 

effort adjacent to marine protected areas using VMS. Mills et al. (2006) mapped the 

spatial extent of trawling effort using VMS data gathered from trawlers in the North Sea. 

Seemens et al. (2007) and Okeeffe et al. (2007) used VMS to estimate fishing effort 

applied to scallop fisheries off the Tasmanian coast and in the Irish and Celtic Seas 

respectively.  
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Over this same time period other researchers were developing methods for modeling 

vessel fishing behavior. Dorn (2001), for example, used a hierarchical model to 

characterize factory trawler behavior while vessels fished for Pacific hake and Bertrand et 

al. (2007) made use of VMS data to characterize the foraging strategies of fishermen 

fishing on Peruvian anchovy. Each of these studies shows the promise that remotely 

sensed data coupled with sophisticated modeling techniques can have for expanding our 

understanding of fishing behavior as well as adding to the body information available for 

fisheries stock assessment and management. 

 

This paper employs VMS data and NOAA Fisheries North Pacific Observer Program 

data from the United States Eastern Bering Sea to predict whether or not fishing is 

occurring for vessel trips with VMS data but without observer data.  Because the North 

Pacific Observer Program database provides us with a large number of vessel trips for 

which we know whether or not fishing is occurring from information recorded by on-

board observers, we are able to compare our predictions with the observed data to 

develop a reasonable and validated model and to determine how accurate our predictions 

can be. 

 

Assessing the probability of fishing in any location begins with a consideration of 

contemporaneous observable information: speed, change in direction, and location.  To 

achieve this goal, we utilize a variety of modeling techniques and data specifications. The 

chosen model can then be evaluated for interpretability, predictive success, and 
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consistency over time. Once judged adequate the model can be used for mapping fishing 

effort over a region to aid management. This will be the approach we will take in this 

paper.  

  

Methods 

Description of Bering Sea pollock fishery 

The Bering Sea pollock fishery is the largest fishery in the United States.  Total 

Allowable Catch (TAC) was 1.5 million tons per year from 2003-2006. The fishery was 

rationalized by the American Fisheries Act (AFA) in 1998 and today slightly more than 

100 vessels do all of the fishing in the fishery.  The fishery’s TAC is divided into several 

allocations.  Community Development Quota (CDQ) groups receive 10 percent of the 

TAC, after which the remaining TAC is divided between the Catcher Processor (40 

percent), Mothership (10%) and Inshore (50%) sectors.  Most of the fishery returns to 

Seattle in the off-season, but the vast majority of landings in the fishery occur in the port 

of Dutch Harbor/Akutan on the southern edge of the Bering Sea.   

 

Figure 1 displays Alaska including the Bering Sea.  The grids in the figure are the Alaska 

Department of Fish and Game (ADF&G) Statistical Areas (Areas) that are a common 

means of summarizing spatial effort in the fishery.  These areas are 1 degree in longitude 

by ½ degree in latitude, although they can be less regular near land. 
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Figure 1: ADF&G Statistical Areas in the Bering Sea and Gulf of Alaska 

 

Description of VMS and Observer Program data 

VMS data are available for all vessels from the directed pollock fishery in the 

Bering Sea since October 1, 2002. In this paper, we utilize data from all pollock trips in 

the Bering Sea by catcher vessels.  We obtained the VMS data from the Alaska Division 

of NOAA Fisheries Office of Law Enforcement for the complete years 2003-2006. The 

data contain a vessel identifier, a time stamp, latitude, longitude, bearing, and speed.  

Observations from vessels are sent to NMFS Enforcement slightly more than 2 times per 

hour. Limiting the data to complete records for the Eastern Bering Sea resulted in the 

total number of vessels and total number of records shown in Table 1 providing a good 

sample size for model training, cross-validation and prediction.  
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Table 1. Number of vessels and number of VMS records associated with each component 

of the analysis for each year  

 

 

 100% Observer Coverage 30% Coverage 
 Training Crossvalidation Prediction 

No. Vessels 14 13 69 
2003 36894 40891 169174 
2004 40614 35182 145232 
2005 49475 43957 153132 
2006 58328 43345 159078 

 

The North Pacific Observer Program at the NOAA Fisheries Alaska Fisheries Science 

Center places observers on vessels 60-124 feet (18-38 meters) for 30% of their days at 

sea while vessels 125 feet (38 meters) and larger  have observers on board for 100 

percent of days at sea. Vessels smaller than 60 feet do not carry observers.  All of the 

vessels in the Bering Sea pollock fishery are larger than 60 feet, so all vessels have some 

observer records.  The Observer Program began this wide-spread coverage in 1990 in 

response to concerns that the fishery may have been impacting endangered Steller sea 

lions.  Importantly, the partial-coverage vessels choose when they are observed, so there 

is no guarantee that the observed trips for these vessels are representative of their total 

effort.   
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In the Bering Sea pollock fishery, more than 80 percent of all catch is observed.  For the 

inshore sector, however, this number is much lower, with just over half of all trips being 

observed.   

 

Model Formulation 

To characterize the nonlinear fluctuations in the probability of fishing as a function of 

vessel speed and bearing a logistic version of a generalized additive model (GAM) was 

employed (Hastie and Tibshirani 1990, Wood 2008): 
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The smoothing functions s() represent penalized regression splines (Wood 2003, 2008). 

Speed is computed as the difference in location over time and bearing, in degrees, is 

computed as the arctangent of the change in latitude divided by the change in longitude. 

The change-in-bearing predictor used by the smoothing spline function is the mean of the 

changes in bearing taken at five time periods: 
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Equation 2 
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This modeling approach was selected from a wide variety of methods and formulations 

estimated as part of this research process. The modeling techniques explored included 

classification regression trees (Breiman et al. 1984), neural network analysis (Bishop 

1995), generalized additive models (Hastie and Tibshirani 1990), intensity kernel 

smoothers (Bowman and Azzalini 1997), and geostatistical methods (Rivoirard et al. 

2000). Once the final modeling approach was settled upon model comparisons were 

made using analysis of deviance (Hastie and Tibshirani 1990). A number of lags for 

speed and change in bearing were explored under the GAM formulation in an attempt to 

make use of information available on adjacent VMS intervals.  

 

The estimated percentage of effort per area i is calculated by summing the GAM 

predicted probability of fishing for each of the VMS observations in an area and dividing 

this by the total probabilistic effort for all areas in a given time period t.   
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This estimated percentage effort is then compared to the observed percentage effort-per-

area i, which is calculated by summing over the actual fishing activity where a value of 

one represents “fishing” and a zero represents “not fishing”. As above, this is divided by 

the total number of ones (total number of observed fishing events) for all areas in a given 

time period t. 

 

Equation 4 
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In order to calculate confidence intervals for effort predictions given in Eq. 3, we used a 

binomial random number generator in R to generate realizations of fishing activity based 

on the predicted probabilities of fishing estimated from the GAM applied to the 2004 

data. A zero or one was generated for each VMS location recorded in the region  The 

ones were then summed for each statistical area for each realization as in Eq. 4 to get 

different realizations of percent effort. One thousand such realizations were simulated. 

We then select the 2.5% and 97.5% observations from these draws to estimate the 95% 

confidence intervals for area predictions.   
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Results 

A number of model formulations and analyses techniques were explored before the final 

version of the model outlined above was settled upon. The continuous nature of the 

predictor functions used in the GAM and the parsimony of the model aided interpretation 

over the types of predictors used in classification and regression tree analysis and neural 

network analysis although the predictions were fairly consistent across analysis methods. 

Intensity kernel smoothers were adequate for spatial classification of fishing activity but 

made no use of the VMS information on speed and bearing and thus were found lacking 

as an estimation technique. Factor representations of latitude and longitude were also 

explored as predictor variables in the GAM, but provided little explanatory value after 

speed and bearing had been included. The residuals from the model fit were examined for 

spatial autocorrelation using variogram analysis, but no spatial correlation remained. The 

results of the selected model fitting are summarized in Table 2. 
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Table 2. Fitted parameters and approximate significance of smoothing functions of GAM 

approach (eqn. 1).  

Parametric 
coefficient: 

    

             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -3.17007    0.04147  -76.44   <0.0001  
     
Approximate 
significance of 
smooth terms: 

    

            Effective df  Chi.square  p-value      
s(St) 7.446 1583.9  <0.0001   
s(St-1) 7.421   338.5 <0.0001   
s(ΔBearing)  8.921   124.1  <0.0001   
 

The shape of the resulting model can be examined for each of the years 2003-2006 by 

plotting model predictions of the probability of fishing for each predictor while holding 

the other predictors constant at their mean levels (Figures 2a,b and 3). The predictions 

indicate that fishing is most likely to take place at speeds of 3-4 knots and at average 

changes in bearing above 45o. The predictions also show consistency across years. 
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Figure 2a. Predicted probability of fishing given speed at time t and 2b given speed at 

time t-1 while all other predictors are held constant at their mean value for 100% 

coverage vessels for years 2003-2006 
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Figure 3. Predicted probability of fishing given mean change in bearing while all 

other predictors are held constant at their mean value for 100% coverage vessels for 

years 2003-2006. 
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Figure 4. Sample tracks of fishing activity for a single vessel. Numbers in top figure are 

in time order and correspond to fishing sequence identifier provided in bottom figure. 

Pink squares in the top portion of the figure correspond to fishing. Segment lines connect 

starting (blue) and ending (orange) times.  

 

 

To explore the model diagnostically one can examine the sensitivity of the prediction 

(sensitivity=Prob(Pred=1|Obs=1)) relative to the specificity of the prediction 

(specificity=Prob(Pred=0|Obs=0). Plotting sensitivity against 1-specificity creates a 

receiver-operator characteristic (ROC) curve that serves as a tool for judging the quality 

of the prediction rule. Ideally we would like to have high sensitivity with low false 
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positives (high specificity). Figure 5 shows the cross-validated ROC curve for the 2004 

VMS vessels with 100% observer coverage. The data were split with data from half the 

vessels used to fit the model and the other half used for validation and creation of the 

ROC curve shown. The 0.94 area under the curve indicates that the model performs well.  
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Figure 5. ROC plot of sensitivity (Prob(Prediction=1|Observation=1)) relative to 1 – 

specificity (Prob(Prediction=1|Observation=0)) for prediction given speed and change in 

direction for three vessel classes. The area under curve, in parenthesis, indicates poor 

performance if near 0.50, with better performance if near 1.00. 

 

Model performance  

Table 3 displays the results of Equations 3 and 4 for the 100-percent coverage vessels and 

the 30% coverage vessels.  The first column shows the ADF&G statistical area number, 

followed by the number of VMS observations (Obs), the percent of predicted effort in 

each area (Prob%), the percentage of observed effort in the area (Obs%), and the 
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difference between the predicted and observed percentages.  This information is 

displayed for the 100% coverage vessels and the 30% coverage vessels. 

 

In order to assess the effectiveness of the model, we first compare the observed fishing 

that occurs in each statistical area with the predicted amount of fishing for the 100-

percent coverage vessels.  We then calculate the difference in proportion of effort 

predicted from observed.  If the model were error-free, assuming the observer data is 

completely accurate, we would expect to see observed percentages closely fit predicted 

percentages for the 100% coverage vessels.  We see that the maximum difference in 

terms of fishing effort is 1.1%, with the median absolute error per statistical area (the 

difference over the observed) equal to 0.092.  Importantly, while these are 100% 

coverage vessels, they are from a holdout sample so this prediction represents out-of-

sample prediction, so all other things being equal we would expect to achieve a similar 

level of predictive accuracy with the 30%-coverage vessels.   

 

After evaluating the error for 100% coverage vessels, we now compare the observed 

fishing that occurs in each statistical area for the 30% coverage vessels with the predicted 

amount of fishing and calculate the difference in proportion of effort predicted versus 

observed.  Here we see that in some cases the deviation is much larger, implying that 

observed fishing effort is not completely representative of all fishing effort.  Most 

dramatically, the second most frequently visited area, 645501, is predicted to have 6.5% 

less effort than appears in the observed trips, with 14.3% of effort predicted versus 20.8% 

observed.  The top 3 zones, in terms of both predicted and observed effort appear to be 
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substantially over-represented in the observed trips, with 52.3% of observed effort 

occurring in these areas versus 40.0% predicted.  For the 100% vessels, we predict 30.4 

percent of the effort to occur in these three zones and we observe 30.5 percent. 
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Table 3: Comparison of observed and predicted fishing in the top 50 statistical areas for 100% and 

30% vessels (2004) 

 

AREA Obs Prob% Obs% Dif% Obs Prob% Obs% Dif%
655430 2511 16.9 17.9 0.98 1785 18.0 21.1 3.11
645501 1415 10.8 10.1 0.67 1761 14.3 20.8 6.53
645434 360 2.8 2.6 0.21 878 7.7 10.4 2.74
655500 778 5.9 5.5 0.39 445 5.1 5.3 0.21
665530 637 4.0 4.5 0.53 274 3.9 3.2 0.68
665430 700 4.9 5.0 0.04 359 3.7 4.2 0.53
675500 1181 7.3 8.4 1.15 347 3.7 4.1 0.45
675530 855 5.5 6.1 0.60 224 3.4 2.7 0.78
665600 206 1.3 1.5 0.14 136 2.5 1.6 0.94
665500 511 3.5 3.6 0.12 151 2.5 1.8 0.76
645600 262 2.1 1.9 0.24 208 2.4 2.5 0.03
755900 64 0.4 0.5 0.04 0 2.2 0.0 2.16
655409 1228 8.1 8.8 0.68 160 2.2 1.9 0.26
635530 64 0.5 0.5 0.08 70 1.6 0.8 0.81
745900 47 0.3 0.3 0.05 2 1.6 0.0 1.56
685630 127 0.9 0.9 0.02 52 1.5 0.6 0.93
675600 489 2.9 3.5 0.57 141 1.5 1.7 0.17
645530 293 2.1 2.1 0.05 67 1.4 0.8 0.56
645433 8 0.1 0.1 0.02 232 1.3 2.7 1.43
705630 153 1.2 1.1 0.11 39 1.2 0.5 0.69
705600 272 1.8 1.9 0.18 132 1.1 1.6 0.45
745830 0 0.1 0.0 0.07 0 1.0 0.0 0.99
735900 0 0.0 0.0 0.01 27 1.0 0.3 0.63
685530 318 1.9 2.3 0.38 205 0.9 2.4 1.48
745930 0 0.0 0.0 0.00 0 0.9 0.0 0.91
655600 249 1.7 1.8 0.03 37 0.9 0.4 0.45
765930 57 0.4 0.4 0.01 30 0.9 0.4 0.53
655410 36 0.3 0.3 0.04 56 0.9 0.7 0.22
675630 130 1.0 0.9 0.06 45 0.8 0.5 0.29
655530 151 1.0 1.1 0.07 98 0.8 1.2 0.38
765900 16 0.1 0.1 0.00 0 0.7 0.0 0.73
735830 0 0.0 0.0 0.01 0 0.7 0.0 0.66
635600 28 0.5 0.2 0.33 0 0.7 0.0 0.66
635504 81 0.7 0.6 0.14 54 0.6 0.6 0.02
665630 28 0.4 0.2 0.22 33 0.5 0.4 0.15
625531 2 0.1 0.0 0.05 18 0.5 0.2 0.31
635630 9 0.3 0.1 0.20 0 0.5 0.0 0.49
705701 49 0.3 0.3 0.06 69 0.5 0.8 0.33
755930 7 0.1 0.0 0.01 0 0.5 0.0 0.46
655630 49 0.3 0.3 0.03 48 0.4 0.6 0.16
695600 125 0.9 0.9 0.00 49 0.4 0.6 0.21
755830 43 0.3 0.3 0.01 0 0.4 0.0 0.35
715700 6 0.0 0.0 0.02 8 0.3 0.1 0.23
625600 0 0.0 0.0 0.01 0 0.3 0.0 0.33
645630 11 0.2 0.1 0.16 7 0.3 0.1 0.24
665401 2 0.7 0.0 0.68 11 0.3 0.1 0.15
685600 92 0.7 0.7 0.07 39 0.3 0.5 0.21
675430 119 0.9 0.8 0.05 7 0.3 0.1 0.17
695631 29 0.2 0.2 0.03 19 0.1 0.2 0.08
625630 0 0.3 0.0 0.31 0 0.1 0.0 0.12

30 percent Vessels100 percent Vessels
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Figure 6 displays the difference by statistical area of the percentage fishing per area 

between the predicted and observed values for partial coverage vessels for 2004.  

 

 

Figure 6: Differnce in Percent of Total Effort between Observed and Predicted for Partial Coverage 

Vessels by ADF&G Statistical Area, 2004 

 

Discussion 

This paper illustrates how VMS data can be used to estimate where fishing occurs for 

unobserved trips in the Bering Sea pollock fishery.  We consider a number of different 

model specifications and find that lagged functions of speed and bearing work well 

within a logistic GAM to predict fishing activity. The model was not improved by 

controlling for spatial correlation in effort after smooth functions of speed, lagged-speed, 

and mean change in bearing were included.  The predictions here indicate that using the 
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observed trips for the partial coverage vessels is not completely representative of their 

overall fishing activity, with some of the most frequently fished zones being substantially 

over-reported in the observer data.  

 

The measure of variability in percent effort per area is conditioned on the location, speed, 

and bearing being known, but seems to be an adequate representation of the uncertainty 

in the area effort predictions. The binomial simulations do not take into account 

uncertainty in the estimation of the probability of fishing at each location, but the large 

sample sizes resulted in very tight errors on the mean prediction levels so that ignoring 

that error was not seen as serious.  

 

We have found that with a relatively high probability, repeated changes in speed and 

bearing lasting for 2-5 VMS time stamps imply that fishing is occurring.  It is a rare event 

in this fishery where vessels slow down and change direction several times over 1-2 

hours when they are not fishing.  However, this may occur randomly at times, which 

would cause us to predict fishing when it is not occurring.  A much more likely source of 

variance between predicted and observed behavior for 100% coverage vessels is that the 

VMS time-stamps are random in relation to when fishing starts, so fishing behavior may 

or may not always be captured at the start or the end of a haul. 

 

Why does observed and predicted effort differ so significantly for 30 percent coverage 

vessels?  There may be several explanations for this.  First, it may be the result of vessels 

having observers on board for the most accessible trips that occur at certain times of year.  
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Because the requirement for observer coverage is for “days at sea” an over-night trip 

gives credit for 2 days.  Thus the apparent bias may be due to the response to observer 

regulations.  Alternatively, vessels may choose to avoid being observed for trips to high-

salmon bycatch areas.  Salmon bycatch has been a significant problem in this fishery 

during the years covered by this analysis.  However, it should be noted that bycatch is 

attributed to the fleet based on the areas where the vessels report fishing based on 3-week 

moving averages, so the ability of fishers to successfully lower recorded bycatch through 

the observer process is less straightforward than simply avoiding being observed in high-

bycatch periods. 

 

We chose to conduct this research on the Bering Sea pollock fishery because of its high 

level of observer coverage, but more important gains in understanding of fisheries are 

likely to be had in applying this methodology to fisheries with lower observer coverage.  

The effectiveness of this method – using changes in speed in bearing to determine fishing 

– may vary across different gear types.  Future research will investigate predictive 

accuracy in cod fisheries that use longline, pot, and pelagic trawl gear and in flatfish 

fisheries that use bottom trawl gear. 

 

The effectiveness of this type of methodology combined with the wide-spread 

distribution of VMS technology provides new opportunities for fisheries managers to 

understand the fisheries that they manage and how they respond to regulation, changing 

fish stock and environmental conditions.  The cost of the technology continues to decline 

so that it may become economically feasible even for artisanal fisheries in developing 
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countries to employ.  Significant fisheries management problems, such as illegal, 

unreported, and unregulated (IUU) fishing, ghost gear, and marine reserve violations can 

all be greatly minimized with this technology. 

 

The method developed in this paper was necessary in the case of unobserved trips 

because the VMS technology itself does not monitor gear deployment.  Affordable 

technology is now available that allows direct monitoring of whether or not gear is 

deployed.  There seems little reason not to implement this type of monitoring, but in 

instances like the Bering Sea where this technology is not in place but we have VMS 

records for past fishing activity, the method developed in this paper provides the ability 

to predict fishing effort with considerable precision for most applications.   
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